Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8624

How to calculate the following limits?

$
0
0

How is it possible calculate the following limits?

$\displaystyle \lim_{x\to 0} \frac{\arctan x -x}{x^3}$

$\displaystyle \lim_{x\to 0} \frac{\ln(1+x)-x}{x^2}$

$\displaystyle \lim_{x\to 0} \frac{\sinh x -x}{x^3}$

$\displaystyle \lim_{x\to 0} \frac{\cosh x -1}{x^2}$

I have calculated them using L'Hospital's rule.

For example:

$\displaystyle \lim_{x\to 0} \frac{\cosh x -1}{x^2}=$

$\displaystyle =\lim_{x\to 0} \frac{\sinh x}{2x}=$

$\displaystyle =\lim_{x\to 0} \frac{\cosh x}{2}=$

$=\displaystyle \frac{1}{2}$

But how is it possible to calculate them without using L'Hospital's rule nor Maclaurin series?


Viewing all articles
Browse latest Browse all 8624

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>