Fix $\delta >0$.I want to show the existence of continuous function $f$, satisfying $supp(f) \subset [2-\delta, 2]$ and $$\frac1{2\pi}\int_{2-\delta}^{2} f(x)\sqrt{4-x^2}\,\mathrm dx=1\;.$$
How do I prove this? Will mollifier be used?
Fix $\delta >0$.I want to show the existence of continuous function $f$, satisfying $supp(f) \subset [2-\delta, 2]$ and $$\frac1{2\pi}\int_{2-\delta}^{2} f(x)\sqrt{4-x^2}\,\mathrm dx=1\;.$$
How do I prove this? Will mollifier be used?