Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9710

Confused if proof is correct $ \limsup s_nt_n = +\infty$

$
0
0

Given

$ \limsup s_n = + \infty $ and $ \liminf t_n > 0$

To prove $$ \limsup s_nt_n = +\infty$$

There exists $s_{n_k}$ such that $ \lim s_{n_k} = +\infty $. Also we have $ \lim t_{n_k} = \liminf t_n $.

$$\lim s_{n_k}t_{n_k} = +\infty $$

Since $\limsup s_nt_n$ is largest all limits of subsequences $s_nt_n$.So $\limsup s_nt_n = +\infty $

Unsure about last part. Can you guide ? Thanks


Viewing all articles
Browse latest Browse all 9710

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>