Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8841

Interchanging liminf and supremum under certain conditions?

$
0
0

Suppose a situation whereby I know for some bounded collection $a_{m,n}$ of real numbers the following:

For any $n \geq 1$, $\displaystyle\liminf_{m\to\infty} a_{m,n} \leq B_{n}$ and we can choose the $B_{n}$ such that $\sup_{n\geq 1}B_{n} <\infty$.

Can I conclude that $\displaystyle\liminf_{m \to \infty} \left(\sup_{n\geq 1}a_{m,n}\right) \leq \sup_{n\geq 1} B_{n}$?

Counter-examples also appreciated.


Viewing all articles
Browse latest Browse all 8841

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>