Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8465

Tangent line of a convex function

$
0
0

Let $V : \mathbb{R}^n \rightarrow \mathbb{R}$ be (strictly) convex and continuously differentiable on $\mathbb{R}^n$. Show that for any $y \in \mathbb{R}^n$ and any $x \in \mathbb{R}^n$$$V(y) \geq V(x) + \nabla V(x)^\top(y-x)$$For $n=1$ this implies that for any $x \in \mathbb{R}$ and for any $y \in \mathbb{R}$, $V(y)$ lies above the tangent line to $V$ at $x$.


Viewing all articles
Browse latest Browse all 8465

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>