Let $V : \mathbb{R}^n \rightarrow \mathbb{R}$ be (strictly) convex and continuously differentiable on $\mathbb{R}^n$. Show that for any $y \in \mathbb{R}^n$ and any $x \in \mathbb{R}^n$$$V(y) \geq V(x) + \nabla V(x)^\top(y-x)$$For $n=1$ this implies that for any $x \in \mathbb{R}$ and for any $y \in \mathbb{R}$, $V(y)$ lies above the tangent line to $V$ at $x$.
↧