Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9183

Can we find a function $f$ such that $f\in C^\infty(\mathbb{R})\cap H^1(\mathbb{R})\cap L^1(\mathbb{R})$ but $(\sqrt{f})' \notin L^2(\mathbb{R})$? [closed]

$
0
0

Can we find a specific function $f$ such that $f\in C^\infty(\mathbb{R})\cap H^1(\mathbb{R})\cap L^1(\mathbb{R})$ but $(\sqrt{f})' \notin L^2(\mathbb{R})$?

Here, $H^1(\mathbb{R})$ denotes the standard Sobolev space containing functions such that $f,f'\in L^2(\mathbb{R})$.


Viewing all articles
Browse latest Browse all 9183

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>