Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9822

Convergence to zero in L2 implies probability of being outside a bounded open set also goes to zero

$
0
0

Suppose I have a sequence of random variables $\{X_n\}_{n=1}^{\infty}$ taking values in $\mathbb{R}^{k\times k}$ and $S \subset \mathbb{R}^{k\times k}$ is a given bounded open set. If I know that$$\mathbb{E}[|X_n|^2] < \frac{c_1}{n}$$where $|\cdot|$ is the spectral norm on vector space of matrices, then how can I prove or disprove that $\lim_{n \to \infty}\mathbb{P}(X_n \in S') \to 0$ (where $S'$ denotes the complement of $S$)?

For reference, the spectral norm is defined here: https://mathworld.wolfram.com/SpectralNorm.html .


Viewing all articles
Browse latest Browse all 9822

Latest Images

Trending Articles



Latest Images

<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>