How to evaluate $\lim_{n \to \infty} \frac{\sum_{k=1}^{n} x_{k} }{n}$ with $x_{n+1}=\ln \left | x_{n} \right | ,x_{1}=2$?
I'm not sure whether it is an example of ergodic theory or not.
How to evaluate $\lim_{n \to \infty} \frac{\sum_{k=1}^{n} x_{k} }{n}$ with $x_{n+1}=\ln \left | x_{n} \right | ,x_{1}=2$?
I'm not sure whether it is an example of ergodic theory or not.