Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8938

Calculus problem involving differentiable function [closed]

$
0
0

Question: Let $f: \mathbb{R} \to \mathbb{R}$ be a twice differentiable function, and let $a$ and $b$ be real numbers s.t. $a<b$ and$$\ln \left(\frac{f(b)+f^{\prime}(b)}{f(a)+f^{\prime}(a)}\right)=b-a$$Show that there exists at least one real number $c \in(a, b)$, s.t. $f^{\prime \prime}(c)=f(c)$.

Any ideas about this question? Thanks!


Viewing all articles
Browse latest Browse all 8938

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>