Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8916

Evaluate $ \int_{0}^{1} \log\left(\frac{x^2-2x-4}{x^2+2x-4}\right) \frac{\mathrm{d}x}{\sqrt{1-x^2}} $

$
0
0

Evaluate :

$$ \int_{0}^{1} \log\left(\dfrac{x^2-2x-4}{x^2+2x-4}\right) \dfrac{\mathrm{d}x}{\sqrt{1-x^2}} $$

Introduction : I have a friend on another math platform who proposed a summation question and he has a good reputation of posting legitimate questions. I worked it out to another equivalent form i.e, the above integral. Here's my work :-

We start with $\displaystyle \sum_{n=0}^\infty L_{2n+1} x^n = \dfrac{x+1}{x^2-3x + 1} $. Replacing $x$ with $x^2$ , we get

$$ \sum_{n=0}^\infty L_{2n+1} x^{2n} = \dfrac{x^2+1}{x^4-3x^2+1} $$

Integrate:

$$ \sum_{n=0}^\infty \dfrac{L_{2n+1} x^{2n+1}}{2n+1} = \underbrace{\int \dfrac{x^2+1}{x^4-3x^2+1} \,\mathrm{d}x}_{:= I} $$

Then, $\displaystyle I = \int \dfrac{ 1+(1/x^2)}{x^2 + 1/x^2 - 3} \, \mathrm{d}x $. Let $t = x - \dfrac1x \Rightarrow \left( 1 + \dfrac1{x^2} \right) \, \mathrm{d}x = \mathrm{d}t $.

Then $\displaystyle I = \int \dfrac{\mathrm{d}t}{t^2-1} = \dfrac12 \log \left | \dfrac{t-1}{t+1} \right | = \dfrac12 \log \left | \dfrac{x^2-x-1}{x^2+x-1} \right | $.

$$ \begin{eqnarray}S & := & \sum_{n=0}^\infty \dfrac{ L_{2n+1}}{(2n+1)^2 \binom{2n}n } = \int_0^1 \sum_{n=0}^\infty \dfrac{ L_{2n+1}}{2n+1} (x-x^2)^n \, \mathrm{d}x \qquad \left(\text{ Because }\dfrac1{(2n+1) \binom{2n}n} = \operatorname{B}(n+1,n+1) = \int_{0}^{1} x^n(1-x)^n \mathrm{d}x\right) \\&=& \int_0^1 \dfrac1{2\sqrt{x-x^2} } \log \left | \dfrac{x -x^2 - \sqrt{x-x^2} - 1}{x -x^2 + \sqrt{x-x^2} - 1} \right | \, \mathrm{d}x \\&=& \int_0^1 f(x)\, \mathrm{d}x \end{eqnarray} $$

Note that $f(1-x) = f(x) $, so $\displaystyle S =2 \int_0^{1/2} f(x) \, \mathrm{d}x = 2 \int_0^{1/2} f\left( \dfrac12 - x\right) \, \mathrm{d}x $, and so

$$ S = \int_0^{1/2} \dfrac1{\sqrt{\frac14 - x^2}} \log \left |\dfrac{a^2-a-1}{a^2+a-1} \right| \, \mathrm{d}x $$

where $a = \sqrt{\dfrac14 - x^2} $.

Substitute $x = \dfrac12 \cos (\theta) $ and simplify:

$$ S = \int_0^{\pi/2} \log \left | \dfrac{ \cos^2 -2 \cos \theta - 4}{\cos^2 + 2\cos\theta - 4} \right | \, \mathrm{d}x = \int_0^1 \log \left ( \dfrac{x^2-2x-4}{x^2+2x-4} \right) \dfrac{\mathrm{d}x}{\sqrt{1-x^2}} \\ \vdots $$

Closed Form : Recently, the same question was posted on M.S.E. albeit in a different form by another friend of mine here. That integral is obtained from this by applying Integration By Parts. Mr. Jack D'Aurizio also gave a closed form in terms of Imaginary part of Dilogarithms, specifically, $$I = -2 \ \Im \left[\text{Li}_2\left[i\left(1-\sqrt{5}+\sqrt{5-2 \sqrt{5}}\right)\right]+\text{Li}_2\left[i\left(1+\sqrt{5}-\sqrt{5+2 \sqrt{5}}\right)\right] \right]$$ However, there is a more elementary closed form that exists for the question (as evident from the original question) in terms of natural logarithm and Catalan's constant.

All solutions are greatly appreciated.


Viewing all articles
Browse latest Browse all 8916

Trending Articles