Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8938

If $f$ satisfies a Lipschitz condition then f is of bounded variation in $\mathbb{R}$?

$
0
0

If $f$ satisfies Lipschitz condition then $f$ is bounded variation in $\mathbb{R}$? A function $f:\mathbb{R} \rightarrow \mathbb{R}$ satisfies a Lipschitz condition at if $\exists M>0$ such that $\forall x,y \in \mathbb{R}$, it holds that $|f(x)−f(y)|≤M|x−y|$

My answer is no, I try to find a example.I know that Dirichlet function is not of bounded variation on any interval in $\mathbb{R}$, but$f(x)=1$ if $x \in\mathbb{Q}$, $f(x)=0$ if $f \in \mathbb{R- Q}$ satifies Lipschitz condition?

Do you have another example?. Thanks for your help.


Viewing all articles
Browse latest Browse all 8938

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>