Quantcast
Viewing all articles
Browse latest Browse all 9124

Evaluating $\lim_{n\to\infty}\sum_{i=1}^n \exp\left(\frac{-|x-X_i|^2}{2(\sigma/n)^2}\right)$

Let $X_1,...,X_n\stackrel{iid}{\sim} \mu$ where has a density with respect to the Lebesgue measure on $\mathbb{R}$: $\mu(dx)=\rho(x)dx$. For every $x$ show$$\lim_{n\to\infty}\sum_{i=1}^n \exp\left(\frac{-|x-X_i|^2}{2(\sigma/n)^2}\right)=\rho(x)\sigma\sqrt{2\pi}.$$

I am very confident the result is true as it has been empirically verified. I arrived at this conjecture because of the following formal argument:\begin{align}\sum_{i=1}^n \exp\left(\frac{-|x-X_i|^2}{2(\sigma/n)^2}\right)&\approx n \int\exp\left(\frac{-|x-y|^2}{2(\sigma/n)^2}\right)\rho(y)dy\\&=\sigma\sqrt{2\pi}\left[\int\frac{n}{\sigma\sqrt{2\pi}}\exp\left(\frac{-|y|^2}{2(\sigma/n)^2}\right)\rho(x+y)dy\right]\\&\xrightarrow{n\to\infty}\sigma\sqrt{2\pi}\int\delta(y)\rho(x+y)dy=\sigma\sqrt{2\pi}\rho(x)\end{align}where I have used the law of large numbers (this is really the part where I am not being precise), the weak convergence of the gaussian to the Dirac delta, and finally the definition of the Dirac delta.


Viewing all articles
Browse latest Browse all 9124

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>