Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9655

Proving Lipschitz continuity (Real analysis)

$
0
0

A function $h : A → \mathbb{R}$ is Lipschitz continuous if $\exists K$ s.t.

$$|h(x) - h(y)| \leq K \cdot |x - y|, \forall x, y \in A$$

Suppose that $I = [a, b]$ is a closed, bounded interval; and $g : I → \mathbb{R}$ is differentiable on $I$ and the function $G = Dg = g' : I → \mathbb{R}$ is continuous. Prove that $g$ is Lipschitz continuous on $I$.


Viewing all articles
Browse latest Browse all 9655

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>