Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9835

A simple(!) change of variables on an integral

$
0
0

Let $1\le p\le q <\infty$ and$$\|f\|_{m_{q}^{p}}:= \sup_{a\in\mathbb{R}^d,R\in(0,1)}|B(a,R)|^{1/p-1/q}\left(\int_{B(a,R)}|f(y)|^p dy\right)^{1/p}.$$

If we take $f(x)=|x|^{-d/q}$, then$$\|f\|_{m_{q}^{p}}= \sup_{R\in(0,1)}|B(0,R)|^{1/p-1/q}\left(\int_{B(0,R)}|y|^{-dp/q} dy\right)^{1/p}=\cdots.$$

The equality above was taken from an paper I read. Is this equality correct?It is clear from the definition that the following inequality is correct.$$\|f\|_{m_{q}^{p}}\geq \sup_{R\in(0,1)}|B(0,R)|^{1/p-1/q}\left(\int_{B(0,R)}|y|^{-dp/q} dy\right)^{1/p}=\cdots.$$But unfortunately I could not understand how this inequality turned into the above equality?


Viewing all articles
Browse latest Browse all 9835

Latest Images

Trending Articles



Latest Images

<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>