Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9655

Prove that $\lim_{x \to \frac{1}{2}} \left( \frac{1}{x^3 + 1} \right) = \frac{8}{9}$ by using the definition of a function limit.

$
0
0

I am trying to show that the given limit exists by use of the epsilon-delta definition. Below is my working thus far:

Let $f(x) = \frac{1}{x^3 + 1}$. If $\lim_{x \to \infty} = \frac{8}{9}$, then forany $\epsilon > 0$, there should exist a $\delta > 0$ such that if $|x - \frac{1}{2}| < \delta$,then $|f(x) - \frac{8}{9}| < \epsilon$.

We have\begin{align*} \left|f(x) - \frac{8}{9}\right| &= \left|\frac{1}{x^3 + 1} - \frac{8}{9}\right| \\&= \left|\frac{9 - 8(x^3 + 1)}{9(x^3 + 1)}\right| \\&= \left|\frac{1 - 8x^3}{9(x^3 + 1)}\right| \\&= \left|\frac{-(2x - 1)(4x^2 + 2x + 1)}{9(x^3 + 1)}\right| \\&= \left|\frac{(2x - 1)(4x^2 + 2x + 1)}{9(x^3 + 1)}\right| \\&= \left|\frac{2(x - \frac{1}{2})(4x^2 + 2x + 1)}{9(x^3 + 1)}\right| \\&= \frac{2}{9}\left|x - \frac{1}{2}\right| \left|\frac{4x^2 + 2x + 1}{x^3 + 1}\right|\end{align*}That is, I have managed to attain my "delta" expression: $|x - \frac{1}{2}|$ in my workings. However, I am unable to continue from here - I no longer know how to continue manipulating\begin{equation}\left|\frac{4x^2 + 2x + 1}{x^3 + 1}\right|\end{equation}to produce anything meaningful. I tried to separate this expression into a sum of modulo fractions using triangle inequality, but none seem to bounded above by anything.

Any sort of help at all would be greatly appreciated.


Viewing all articles
Browse latest Browse all 9655

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>