Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9932

Is it true that $\frac{b-a}{a}\geq\ln\frac{b}{a}\geq\frac{b-a}{b}$ for $0

$
0
0

By the mean value theorem, for $0<a<b$, one has$$\frac{b-a}{b}\leq\ln\frac{b}{a}\leq\frac{b-a}{a}.$$

Does this imply that, for $0<b<a$, one has$$\frac{b-a}{a}\geq\ln\frac{b}{a}\geq\frac{b-a}{b}?$$

I do not think so. I would rather think that by mean value theorem, one has$$\frac{b-a}{a}\leq\ln\frac{b}{a}\leq\frac{b-a}{b}$$


Viewing all articles
Browse latest Browse all 9932

Latest Images

Trending Articles



Latest Images

<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>