Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 8707

Can we partiton ℝ into sets $A$ and $B$, where the Lebesgue measures in every non-empty open interval have a non-zero constant ratio not equal to one?

$
0
0

Suppose $\lambda$ is the Lebesgue measure on the Borel $\sigma$-algebra.

Does there exist an example of sets $A,B\subset\mathbb{R}$, where:

  1. $A\cup B=\mathbb{R}$
  2. $A\cap B=\emptyset$
  3. for all non-empty open intervals $I:=(a,b)\subset\mathbb{R}$, such that $c\neq 1$ is a non-zero constant:

$$\lambda(A\cap I)=c\cdot\lambda(B \cap I)?$$

This answer might offer a hint, despite $c$ being non-constant, where $c$ is positive (and):

$$\lim_{t\to\infty}\frac{\lambda(A\cap[-t,t])}{2t}=\frac{2}{3}$$

$$\lim_{t\to\infty}\frac{\lambda(B\cap[-t,t])}{2t}=\frac{1}{3}$$


Viewing all articles
Browse latest Browse all 8707

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>