Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9876

How to evaluate $\int_{-\infty}^\infty \frac{x-2}{(x^2+x+4)\sqrt{x^2+2x+4}}dx $

$
0
0

I would like to study how to evaluate the definite integral$$\int_{-\infty}^\infty \frac{x-2}{(x^2+x+4)\sqrt{x^2+2x+4}}dx$$

Based on the integration techniques that I know, I proceed by completing the square and then introducing the trigonometric substitution $x+1=\sqrt3 \sinh t$ to transform the integral to$$ \int_{-\infty}^\infty \frac{\sqrt3 \sinh t-3 }{3\sinh^2t-\sqrt3\sinh t +4}dt$$At this point, I further introduce the ‘half-angle’ substitution $y=\tanh\frac t2$. But, the resulting integrand is of a quartic function in $y$, which I do not how how to deal with. I prefer using real method.


Viewing all articles
Browse latest Browse all 9876

Latest Images

Trending Articles



Latest Images

<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>