Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9524

How can I deal with floor functions inside a sum?

$
0
0

For context, imagine a sum along the variable $n$ whose terms $a_n = \lfloor nr\rfloor \cdot f(n)$ or $a_n = g(\lfloor nr\rfloor)$ for some value $r \in \mathbb{R}$. For example, I am working with the following sums (amongst others) with $r = \sqrt{2}$.

$$S=\sum_{n=1}^{\infty} \frac{\lfloor nr\rfloor}{n^3} \quad;\quad T=\sum_{n=1}^{\infty} \frac{H_{\lfloor nr\rfloor}}{n^3}$$

Where $H_k$ is the $k$-th harmonic number.

Is there an "easy" way to get rid of those $\lfloor nr\rfloor$?


Viewing all articles
Browse latest Browse all 9524

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>