Define supremum of a set $S\subset R$ and show that the $\sup S =\frac{1}{2}$where $S=\{\frac{n}{2n+1} \mid n\in N\}$.
↧
Define supremum of a set $S\subset R$ and show that the $\sup S =\frac{1}{2}$where $S=\{\frac{n}{2n+1} \mid n\in N\}$.