Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 9994

Can the inequality of integration be kept?

$
0
0

I'm considering two function $f,g\in L^{1}(\Omega)$ which satisfy\begin{align} \int_{\Omega}f dx\leq\int_{\Omega}g dx\end{align}Now, if I consider more a function $\phi\in C^{1}(\Omega)$ such that $0\leq\phi\leq1$ in $\Omega$. Will the inequality\begin{align} \int_{\Omega}\phi f dx\leq \int_{\Omega}\phi gdx \end{align}still holds true?


Viewing all articles
Browse latest Browse all 9994

Latest Images

Trending Articles



Latest Images

<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>