Quantcast
Channel: Active questions tagged real-analysis - Mathematics Stack Exchange
Viewing all articles
Browse latest Browse all 11166

Proof of Inequality Involving Ordered Real Numbers and Geometric Means

$
0
0

Let $x_1, x_2, \dots, x_n$ be real numbers such that $x_n \geq x_{n-1} \geq \dots \geq x_1$ and $0 < x_i \leq \frac{1}{n}$, for any $i$. Define $t = \left(x_1 \cdot x_2 \cdot \dots \cdot x_n\right)^{\frac{1}{n}}$. Prove that$$(1 + x_n(n-1))(1 - x_1)(1 - x_2) \dots (1 - x_{n-1}) \geq (1 + t(n-1))(1 - t)^{n-1}.$$

I tried running a computer simulation, and it seems like the inequality holds true.

Additionally, it's worth noting that while the simulation suggests the inequality holds, there is a possibility it might be incorrect, but probably it is possiblity correct in cases when $x_i$ is smaller than $O\left(\frac{1}{n^s}\right)$ for some $s$.

I'm attaching the code I used for the simulation for reference.

import numpy as npdef pick_parameters(n):    # Generate n random numbers between 0 and 1 and sort them    x = sorted(np.random.uniform(0,1/(n), n))    return xdef compute_t(x):    n = len(x)    t = np.prod(x) ** (1 / n)    return tdef check_inequality(x):    n = len(x)    t = compute_t(x)    left_side = (1 + (n - 1) * x[n-1]) * np.prod([(1 - x[i]) for i in range(n - 1)])    right_side = (1 + t * (n-1)) * ((1 - t) ** (n - 1))    return left_side >= right_side, left_side, right_sidedef main():    n = int(input("Enter the number of parameters n: "))    x = pick_parameters(n)    print(f"Picked parameters x: {x}")    t = compute_t(x)    print(f"Computed t: {t}")    inequality_holds, left_side, right_side = check_inequality(x)    print(f"Inequality holds: {inequality_holds}")    print(f"Left side of the inequality: {left_side}")    print(f"Right side of the inequality: {right_side}")if __name__ == "__main__":    main()

Viewing all articles
Browse latest Browse all 11166

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>