Let $(a_n)$ be bounded sequence, s.t for all $n \in \mathbb{N}$, $a_{n+1}\geq a_{n} - \dfrac{1}{2^n}$, I'm stuck on showing $(a_n)$ converges.
↧
Let $(a_n)$ be bounded sequence, s.t for all $n \in \mathbb{N}$, $a_{n+1}\geq a_{n} - \dfrac{1}{2^n}$, I'm stuck on showing $(a_n)$ converges.